斜率优化
「CF311B」Cats Transport-斜率优化dp
· ✏️ 832 words · ☕ 2 mins read

Zxr960115 是一个大农场主。他养了 $m$ 只可爱的猫子,雇佣了 $p$ 个铲屎官。这里有一条又直又长的道路穿过了农场,有 $n$ 个山丘坐落在道路周围,编号自左往右从1到n。山丘 $i$ 与山丘 $i-1$ 的距离是 $d_i$ 米。铲屎官们住在 $1$ 号山丘。

一天,猫子们外出玩耍。猫子 $i$ 去山丘 $h_i$ 游玩,在 $t_i$ 时间结束他的游玩,然后在山丘 $h_i$ 傻等铲屎官。铲屎官们必须把所有的猫子带上。每个铲屎官都会从 $1$ 走到 $n$ 号山丘,可以不花费时间的把所有路途上游玩结束的猫子带上。每个铲屎官的速度为一米每单位时间,并且足够强壮来带上任意数量的猫子。

你的任务是安排每个铲屎官出发的时间,最小化猫子们等待的时间之和。


「ZJOI2007」仓库建设-斜率优化
· ✏️ 555 words · ☕ 2 mins read

L 公司有 $N$ 个工厂,由高到底分布在一座山上。工厂 $1$ 在山顶,工厂 $N$ 在山脚。

由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第 $i$ 个工厂目前已有成品 $P_i$ 件,在第 $i$ 个工厂位置建立仓库的费用是 $C_i$ 。

对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于 L 公司产品的对外销售处设置在山脚的工厂 $N$ ,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送 $1$ 个单位距离的费用是 $1$ 。

假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:

  • 工厂 $i$ 距离工厂 $1$ 的距离 $X_i$(其中 $X_1=0$ );
  • 工厂 $i$ 目前已有成品数量 $P_i$ ;
  • 在工厂 $i$ 建立仓库的费用 $C_i$ ;

请你帮助 L 公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。


「NOI2007」货币兑换-Splay+斜率优化
· ✏️ 1928 words · ☕ 4 mins read

小 $Y$ 最近在一家金券交易所工作。该金券交易所只发行交易两种金券:$A$ 纪念券(以下简称 $A$ 券)和 $B$ 纪念券(以下简称 $B$ 券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 $K$ 天中 $A$ 券 和 $B$ 券的价值分别为 $A_K$ 和 $B_K$(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。比例交易法分为两个方面:

(a)卖出金券:顾客提供一个 $[0,100]$ 内的实数 $OP$ 作为卖出比例,其意义为:将 $OP%$ 的 $A$ 券和 $OP%$ 的 $B$ 券以当时的价值兑换为人民币;

(b)买入金券:顾客支付 $IP$ 元人民币,交易所将会兑换给用户总价值为 $IP$ 的金券,并且,满足提供给顾客的 $A$ 券和 $B$ 券的比例在第 $K$ 天恰好为 $Rate_K$ ;

注意到,同一天内可以进行多次操作。小 $Y$ 是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经知道了未来 $N$ 天内的 $A$ 券和 $B$ 券的价值以及 $Rate$ 。他还希望能够计算出来,如果开始时拥有 $S$ 元钱,那么 $N$ 天后最多能够获得多少元钱。


「APIO2014」序列分割-动态规划-斜率优化
· ✏️ 670 words · ☕ 2 mins read

你正在玩一个关于长度为 $n$ 的非负整数序列的游戏。这个游戏中你需要把序列分成 $k + 1$ 个非空的块。为了得到 $k + 1$ 块,你需要重复下面的操作 $k$ 次:

  • 选择一个有超过一个元素的块(初始时你只有一块,即整个序列)
    • 选择两个相邻元素把这个块从中间分开,得到两个非空的块。

每次操作后你将获得那两个新产生的块的元素和的乘积的分数。你想要最大化最后的总得分。